Tuesday, December 3, 2019

Multiple Regression and Correlation Analysis Project

Introduction In the paper, a regression model will be developed to give a linear relationship between gross domestic product (GDP) and foreign direct investment, budget deficit, and money supply for Qatar. Further, correlation matrix will be developed for the variables.Advertising We will write a custom research paper sample on Multiple Regression and Correlation Analysis Project specifically for you for only $16.05 $11/page Learn More Finally, a comprehensive analysis will be carried out on the regression model developed. The data used in the analysis will be collected from The World Bank, International Monetary Fund and Trading Economics (The World Bank 1; International Monetary Fund 1; Trading Economics 1). Correlation matrix Correlation coefficient measures the degree of association between two variables. The correlation matrix for the variables is presented in appendix 2. Based on the results of correlation analysis, it can be observed that there is a weak positive relationship between gross domestic product (GDP) and foreign direct investment (FDI). The value of the correlation coefficient between the two variables is 0.4611. Secondly, the correlation coefficient between GDP and the budget deficit is 0.9487. It indicates a strong positive relationship between the two variables. Further, the correlation coefficient between GDP and money supply (M3) is 0.9933. It shows a very strong positive relationship between the two variables. Also, the correlation coefficient between GDP and the consumer price index is 0.9280. It shows a strong positive relationship between the variables. Thus, it can be observed that there is a strong positive relationship between the explained variable and the explanatory variables (Verbeek 28). Multicollinearity Multicollinearity is a scenario where there is a strong association between the explanatory variables. Thus, the correlation coefficient between the independent variables is quite high. The exis tence of multicollinearity between the independent variables affects the results of regression. Based on the results of correlation, it can be observed that there is a strong positive correlation coefficient between money supply and budget deficit. The value of the coefficient is 0.9446. Also, there is a slightly high positive correlation between money supply and FDI, that is, 0.4910.Advertising Looking for research paper on business economics? Let's see if we can help you! Get your first paper with 15% OFF Learn More Therefore, money supply will be dropped in the formulation of the regression model. This will improve the results of the regression equation (Verbeek 28). Multiple regression analysis The multiple regression model is used when more than one explanatory variable is used when coming up with the regression equation. From the correlation analysis, the explained variable is GDP (Y) while the explanatory variables are FDI (X1) and the budget deficit (X2). The regression line will take the form when the ordinary least squares method is used. The simplified regression equation is Y = b0 + b1X1 + b2X2. Further, it is necessary to specify the theoretical expectation. It is expected that bo will take any value while b1 and b2 will be positive (b1 and b2 0). Regression equation The results of the regression analysis are presented in appendix 1. From the table, the value of bo is 12,296,921,623, b1 is 7.1175, and b2 is 0.41198. The least squares regression equation is shown below. Y = 12,296,921,623 + 7.1175X1 + 0.41198X2 Interpretation of the coefficient The coefficient of b1, 7.1175, shows that if the value of FDI increases by one unit, then the value of GDP will increase by 7.1175. This shows that a unit increase in the value of FDI will result in a more than proportionate increase in GDP.Advertising We will write a custom research paper sample on Multiple Regression and Correlation Analysis Project specifically for you for only $16.05 $11/page Learn More The value of second coefficient b2 is 0.41198. It shows that an increase in the value of budget deficit by one unit results in an increase in the value of GDP by 0.41198 of a unit. The positive coefficients are in agreement with the theoretical expectations. This shows that a unit increase in the value of budget deficit will result in a less than proportionate change in GDP (Verbeek 28). Confidence interval for each slope The confidence interval is calculated based on the values of the sample collected from a given population. It gives the range within which the population parameter is expected to lie. Further, the population parameter is not known. Therefore, confidence interval does not give the exact value of the population parameter. The intervals will be calculated at 95% confidence level. The confidence interval is calculated using the formula shown below. Sample statistic + Z value * standard error / √n b1 = 7.1175  ± 1.96 * 0.9630547 / √25 = 7.1175  ± 0.377517442 = 6.739959703 ≠¤ b1 ≠¤ 7.494994588Advertising Looking for research paper on business economics? Let's see if we can help you! Get your first paper with 15% OFF Learn More The confidence interval indicates that the slope of FDI for the entire population will lie between 6.7399 and 7.4949. b2 = 0.41198  ± 1.96 * 0.017080311 / √25 = 0.41198  ± 0.006695 = 0.405289 ≠¤ b2 ≠¤ 0.41868 The confidence interval indicates that the slope of budget deficit for the entire population will lie between 0.405289 and 0.41868. Standard error Standard error is similar to the standard deviation though it applies in the case of a sample. It measures the accuracy with which the sample statistic represents the population parameter. A small value of the standard error is desirable because it indicates that the sample statistic is close to the population parameter. The standard error of the regression model is 9,620,452,837. The value is quite high and it shows that the results generated by the sample regression model will deviate significantly from the population model. Further, the standard error of the coefficient of FDI is 0.9630547 while the error of the coefficient of the budget deficit is 0.0170803. The values of standard error are low. This shows that the coefficients of the explanatory variables are estimated with a lot of precision. Further, the values of the coefficient are larger than the standard error. It indicates that the value is different from zero. ANOVA ANOVA analyzes the difference between means. First, ANOVA estimates the mean of each sample separately. This gives the sample mean. Secondly, it estimates the mean of all the samples put together. This gives the overall mean. Further, it estimates the deviation of each observation in each sample from the corresponding sample mean. This gives the variation within the samples (explained variance). The next step entails estimating the deviation of the sample mean from the overall mean. This gives the variation between samples (unexplained variance). The final step is the division of variation between the samples by variation within the samples. This gives the F-statistic . The significance F is estimated from the F ratio and the degrees of freedom of the numerator and the denominator. The significance F indicates whether all the samples are drawn from the population (Verbeek 28). Prediction Point prediction FDI – Highest value = 8124736264 Budget deficit – Highest value = 4.34105E+11 The point prediction is 2.48969E+11. It gives the predicted value of GDP at the maximum points. Confidence interval b1 = 8124736264  ± 1.96 * 417221610.5 / √25 = 8124736264  ± 163550871.3 = 7961185393 ≠¤ b1 ≠¤ 8288287135 b2 = 4.34105E+11  ± 1.96 * 23524584830 / √25 = 4.34105E+11  ± 9221637253 = 4.24883E+11 ≠¤ b2 ≠¤ 4.43327E+11 The confidence interval gives the range within which the population parameter will lie. Prediction interval b1 = 8124736264  ± 1.96 * 417221610.5 / √1 + 1/25 = 8124736264  ± 163550871.3 = 7290787182 ≠¤ b1 ≠¤ 8958685346 b2 = 4.34105E+11  ± 1.96 * 23524584830 / √1 + 1/25 = 4.34105E+11  ± 9221637253 = 3.87E+11 ≠¤ b2 ≠¤ 4.81E+11 Prediction interval covers a wider scope than confidence interval. It gives the range within which the future value will lie. Validity of the regression Hypothesis Null hypothesis H0: ÃŽ ²0 = ÃŽ ²1 =, = ÃŽ ²p Alternative hypothesis H1: ÃŽ ²j ≠  0, for at least one value of j The null hypothesis implies that the overall regression line is not significant. The alternative hypothesis implies that overall regression line is significant. Tests statistics The overall significance of the regression model will be analyzed using a two tailed F-test. The test will be carried out at 5% significance level. Rejection rule The null hypothesis will be rejected if the value of F-calculated is greater than the value of F-tabulated. Decision The ANOVA table is presented in appendix 3. The F-calculated is 372.4311 while the value of F-tabulated is 3.4434. Therefore, the null hypothesis will be rejected at the 5% lev el of significance. This implies that the overall regression is significant at the 5 % level of significance. The value of R-square is 97.13% while the value of the adjusted R-square is 96.87%. The value of R-square indicates the explanatory variables explain 97.13% of the variations in the explained variable. It is an indication of a strong regression model. Test of significance Hypothesis Null hypothesis: Ho: bi = 0 (variables are not significant determinants) Alternative hypothesis: Ho: bi ≠  0 (variables are significant determinant) The null hypothesis implies that the variables are not significant determinants of demand. The alternative hypothesis implies that variables are significant determinant of demand. Tests statistics The test of significance of each explanatory variable will be carried out using t-test. A two tailed t-test is carried out at 95% level of confidence. Rejection rule The null hypothesis will be rejected if the value of t-calculated is greater tha n the value of t-tabulated. Decision The value of the t-statistic for the b1 is 7.3905 while for b2 is 24.1204. The value of t-tabulated is 1.9432 at 5% significance level. Since the value of the t-statistic is greater than the value of t-tabulated, the null hypothesis will be rejected and conclude that FDI and the budget deficit are significant determinants of GDP at 5% level of significance. Assumptions and testing The first assumption of a multiple regression model is that the sample data of the variables are normally distributed. Secondly, the model assumes that there exists a linear relationship between the explained variable and the explanatory variables. Third, the variables used in the analysis are estimated without an error. Finally, the model assumes that the variance of the error term is constant (Vinod 78). Conclusion The paper developed a regression model for the relationship between GDP (as the explained variable) and FDI and the budget deficit (as the explanatory va riables). The discussion above indicates that FDI and the budget deficit are valid and significant determinants of GDP. Besides, the variables explain a significant proportion of the variations of the dependent variable. Also, the overall regression line is significant. The regression line can be improved by adding other significant variables and increasing the sample size. Works Cited International Monetary Fund 2013, Data and Statistics. Web. https://www.imf.org/external/pubs/ft/weo/2012/02/weodata/weorept.aspx?pr.x=41pr.y=6sy=1980ey=2017scsm=1ssd=1sort=countryds=.br=1c=453s=NGDP_R%2CNGDP%2CNGDPD%2CNGDP_D%2CPCPI%2CGGR%2CGGR_NGDP%2CGGX%2CGGX_NGDPgrp=0a=. The World Bank 2013, World Economic Indicators. Web. https://databank.worldbank.org/data/reports.aspx?source=world-development-indicators#c_q. Trading Economics 2013, Qatar Economic Indicators. Web. https://tradingeconomics.com/qatar/indicators. Verbeek, Marno. A Guide to Modern Econometrics, England: John Wiley Sons, 2008. Print. Vinod, Hrishikesh. Hands on Intermediate Econometrics Using R: Templates for Extending Dozens of Practical Examples. New Jersey: World Scientific Publishers, 2008. Print. Appendices Appendix 1.  Regression output Summary Output Regression Statistics Multiple R 0.98555145 R Square 0.97131167 Adjusted R Square 0.96870364 Standard Error 9620452837 Observations 25 Coefficients Standard Error t Stat P-value Intercept 1.2297E+10 2365727509 5.19795 3.267E-05 X Variable 1 7.11747715 0.9630547 7.39052 2.144E-07 X Variable 2 0.41198431 0.017080311 24.1204 2.571E-17 Appendix 2.  Correlation matrix Gross domestic product Foreign direct investment Budget deficit Money supply (M3) Consumer price index Gross domestic product 1 Foreign direct investment 0.461132 1 Budget deficit 0.948729 0.211088 1 Money supply (M3) 0.99335 0.491049 0.944616 1 Consumer price index 0.928099 0.699044 0.778696 0.920747 1 Appe ndix 3.  Summary of ANOVA ANOVA df SS MS F Significance F Regression 2 6.89393E+22 3.45E+22 372.4311648 1.08332E-17 Residual 22 2.03617E+21 9.26E+19 Total 24 7.09755E+22 This research paper on Multiple Regression and Correlation Analysis Project was written and submitted by user Kason W. to help you with your own studies. You are free to use it for research and reference purposes in order to write your own paper; however, you must cite it accordingly. You can donate your paper here.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.